A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella

نویسندگان

  • Alexander Harms
  • Marius Liesch
  • Jonas Körner
  • Maxime Québatte
  • Philipp Engel
  • Christoph Dehio
چکیده

Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions

Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacter...

متن کامل

mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria.

mazEF is a toxin-antitoxin module located on the Escherichia coli chromosome and that of some other bacteria, including pathogens. mazF specifies for a stable toxin, MazF, and mazE specifies for a labile antitoxin, MazE, that antagonizes MazF. MazF is a sequence-specific mRNA endoribonuclease that initiates a programmed cell death pathway in response to various stresses. The mazEF-mediated deat...

متن کامل

Chaperone addiction of toxin–antitoxin systems

Bacterial toxin-antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin-antitoxin-chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC m...

متن کامل

Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality.

The discovery of toxin-antitoxin gene pairs (also called addiction modules) on extrachromosomal elements of Escherichia coli, and particularly the discovery of homologous modules on the bacterial chromosome, suggest that a potential for programmed cell death may be inherent in bacterial cultures. We have reported on the E. coli mazEF system, a regulatable addiction module located on the bacteri...

متن کامل

Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities?

Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017